library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use ieee.math_real.all; entity sine is port (clk : in std_ulogic; rst_n : in std_ulogic; phase_inc_i : in std_ulogic_vector(9 downto 0); phase_o : out std_ulogic_vector(9 downto 0); sample_o : out std_ulogic_vector(13 downto 0)); end entity; architecture rtl of sine is signal phase : unsigned(9 downto 0); type rom_t is array (0 to 1023) of signed(13 downto 0); function sine_rom_init_f return rom_t is variable phase_real : real := 0.0; variable sinereal : real; variable sinequan : signed(13 downto 0); variable rom_v : rom_t; begin for i in 0 to 1023 loop phase_real := 2.0 * MATH_PI * real(i) / 1024.0; sinereal := sin(phase_real); sinequan := to_signed(integer(sinereal * real(2**13-1)), 14); rom_v (i) := sinequan; end loop; return rom_v; end function; constant rom : rom_t := sine_rom_init_f; signal rom_out_reg : signed(13 downto 0); signal rom_index_reg : integer range 0 to 1023; begin -- phase accumulator phase <= "0000000000" when rst_n = '0' else phase + unsigned(phase_inc_i) when rising_edge(clk); rom_index_reg <= to_integer(phase) when rising_edge(clk); rom_out_reg <= rom(rom_index_reg) when rising_edge(clk); sample_o <= "00000000000000" when rst_n = '0' else std_ulogic_vector(rom_out_reg) when rising_edge(clk); phase_o <= "0000000000" when rst_n = '0' else std_ulogic_vector(phase) when rising_edge(clk); end architecture rtl;