1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
|
## Index
- [Index](#index)
- [Description](#description)
- [Area usage and maximal frequency](#area-usage-and-maximal-frequency)
- [Dependencies](#dependencies)
- [CPU generation](#cpu-generation)
- [Regression tests](#regression-tests)
- [Interactive debug of the simulated CPU via GDB OpenOCD and Verilator](#interactive-debug-of-the-simulated-cpu-via-gdb-openocd-and-verilator)
- [Using Eclipse to run and debug the software](#using-eclipse-to-run-and-debug-the-software)
- [By using gnu-mcu-eclipse](#by-using-gnu-mcu-eclipse)
- [By using Zylin plugin (old)](#by-using-zylin-plugin-old)
- [Briey SoC](#briey-soc)
- [Murax SoC](#murax-soc)
- [Running Linux](#running-linux)
- [Build the RISC-V GCC](#build-the-risc-v-gcc)
- [CPU parametrization and instantiation example](#cpu-parametrization-and-instantiation-example)
- [Add a custom instruction to the CPU via the plugin system](#add-a-custom-instruction-to-the-cpu-via-the-plugin-system)
- [Adding a new CSR via the plugin system](#adding-a-new-csr-via-the-plugin-system)
- [CPU clock and resets](#cpu-clock-and-resets)
- [VexRiscv Architecture](#vexriscv-architecture)
- [FPU](#fpu)
- [Plugins](#plugins)
- [IBusSimplePlugin](#ibussimpleplugin)
- [IBusCachedPlugin](#ibuscachedplugin)
- [DecoderSimplePlugin](#decodersimpleplugin)
- [RegFilePlugin](#regfileplugin)
- [HazardSimplePlugin](#hazardsimpleplugin)
- [SrcPlugin](#srcplugin)
- [IntAluPlugin](#intaluplugin)
- [LightShifterPlugin](#lightshifterplugin)
- [FullBarrelShifterPlugin](#fullbarrelshifterplugin)
- [BranchPlugin](#branchplugin)
- [Prediction NONE](#prediction-none)
- [Prediction STATIC](#prediction-static)
- [Prediction DYNAMIC](#prediction-dynamic)
- [Prediction DYNAMIC_TARGET](#prediction-dynamic_target)
- [DBusSimplePlugin](#dbussimpleplugin)
- [DBusCachedPlugin](#dbuscachedplugin)
- [MulPlugin](#mulplugin)
- [DivPlugin](#divplugin)
- [MulDivIterativePlugin](#muldiviterativeplugin)
- [CsrPlugin](#csrplugin)
- [StaticMemoryTranslatorPlugin](#staticmemorytranslatorplugin)
- [MmuPlugin](#mmuplugin)
- [PmpPlugin](#pmpplugin)
- [DebugPlugin](#debugplugin)
- [YamlPlugin](#yamlplugin)
- [FpuPlugin](#fpuplugin)
- [AesPlugin](#aesplugin)
## Description
This repository hosts a RISC-V implementation written in SpinalHDL. Here are some specs :
- RV32I[M][A][F[D]][C] instruction set
- Pipelined from 2 to 5+ stages ([Fetch*X], Decode, Execute, [Memory], [WriteBack])
- 1.44 DMIPS/Mhz --no-inline when nearly all features are enabled (1.57 DMIPS/Mhz when the divider lookup table is enabled)
- Optimized for FPGA, does not use any vendor specific IP block / primitive
- AXI4, Avalon, wishbone ready
- Optional MUL/DIV extensions
- Optional F32/F64 FPU (require data cache for now)
- Optional instruction and data caches
- Optional hardware refilled MMU
- Optional debug extension allowing Eclipse debugging via a GDB >> openOCD >> JTAG connection
- Optional interrupts and exception handling with Machine, [Supervisor] and [User] modes as defined in the [RISC-V Privileged ISA Specification v1.10](https://riscv.org/specifications/privileged-isa/).
- Two implementations of shift instructions: single cycle (full barrel shifter) and shiftNumber cycles
- Each stage can have optional bypass or interlock hazard logic
- Linux compatible (SoC : https://github.com/enjoy-digital/linux-on-litex-vexriscv)
- Zephyr compatible
- [FreeRTOS port](https://github.com/Dolu1990/FreeRTOS-RISCV)
The hardware description of this CPU is done by using a very software oriented approach
(without any overhead in the generated hardware). Here is a list of software concepts used:
- There are very few fixed things. Nearly everything is plugin based. The PC manager is a plugin, the register file is a plugin, the hazard controller is a plugin, ...
- There is an automatic a tool which allows plugins to insert data in the pipeline at a given stage, and allows other plugins to read it in another stage through automatic pipelining.
- There is a service system which provides a very dynamic framework. For instance, a plugin could provide an exception service which can then be used by other plugins to emit exceptions from the pipeline.
There is a gitter channel for all questions about VexRiscv :<br>
[](https://gitter.im/SpinalHDL/VexRiscv?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge)
For commercial support, please contact spinalhdl@gmail.com.
## Area usage and maximal frequency
The following numbers were obtained by synthesizing the CPU as toplevel on the fastest speed grade without any specific synthesis options to save area or to get better maximal frequency (neutral).<br>
The clock constraint is set to an unattainable value, which tends to increase the design area.<br>
The dhrystone benchmark was compiled with the `-O3 -fno-inline` option.<br>
All the cached configurations have some cache trashing during the dhrystone benchmark except the `VexRiscv full max perf` one. This, of course, reduces the performance. It is possible to produce
dhrystone binaries which fit inside a 4KB I$ and 4KB D$ (I already had this case once) but currently it isn't the case.<br>
The CPU configurations used below can be found in the `src/scala/vexriscv/demo` directory.
```
VexRiscv small (RV32I, 0.52 DMIPS/Mhz, no datapath bypass, no interrupt) ->
Artix 7 -> 243 Mhz 504 LUT 505 FF
Cyclone V -> 174 Mhz 352 ALMs
Cyclone IV -> 179 Mhz 731 LUT 494 FF
iCE40 -> 92 Mhz 1130 LC
VexRiscv small (RV32I, 0.52 DMIPS/Mhz, no datapath bypass) ->
Artix 7 -> 240 Mhz 556 LUT 566 FF
Cyclone V -> 194 Mhz 394 ALMs
Cyclone IV -> 174 Mhz 831 LUT 555 FF
iCE40 -> 85 Mhz 1292 LC
VexRiscv small and productive (RV32I, 0.82 DMIPS/Mhz) ->
Artix 7 -> 232 Mhz 816 LUT 534 FF
Cyclone V -> 155 Mhz 492 ALMs
Cyclone IV -> 155 Mhz 1,111 LUT 530 FF
iCE40 -> 63 Mhz 1596 LC
VexRiscv small and productive with I$ (RV32I, 0.70 DMIPS/Mhz, 4KB-I$) ->
Artix 7 -> 220 Mhz 730 LUT 570 FF
Cyclone V -> 142 Mhz 501 ALMs
Cyclone IV -> 150 Mhz 1,139 LUT 536 FF
iCE40 -> 66 Mhz 1680 LC
VexRiscv full no cache (RV32IM, 1.21 DMIPS/Mhz 2.30 Coremark/Mhz, single cycle barrel shifter, debug module, catch exceptions, static branch) ->
Artix 7 -> 216 Mhz 1418 LUT 949 FF
Cyclone V -> 133 Mhz 933 ALMs
Cyclone IV -> 143 Mhz 2,076 LUT 972 FF
VexRiscv full (RV32IM, 1.21 DMIPS/Mhz 2.30 Coremark/Mhz with cache trashing, 4KB-I$,4KB-D$, single cycle barrel shifter, debug module, catch exceptions, static branch) ->
Artix 7 -> 199 Mhz 1840 LUT 1158 FF
Cyclone V -> 141 Mhz 1,166 ALMs
Cyclone IV -> 131 Mhz 2,407 LUT 1,067 FF
VexRiscv full max perf (HZ*IPC) -> (RV32IM, 1.38 DMIPS/Mhz 2.57 Coremark/Mhz, 8KB-I$,8KB-D$, single cycle barrel shifter, debug module, catch exceptions, dynamic branch prediction in the fetch stage, branch and shift operations done in the Execute stage) ->
Artix 7 -> 200 Mhz 1935 LUT 1216 FF
Cyclone V -> 130 Mhz 1,166 ALMs
Cyclone IV -> 126 Mhz 2,484 LUT 1,120 FF
VexRiscv full with MMU (RV32IM, 1.24 DMIPS/Mhz 2.35 Coremark/Mhz, with cache trashing, 4KB-I$, 4KB-D$, single cycle barrel shifter, debug module, catch exceptions, dynamic branch, MMU) ->
Artix 7 -> 151 Mhz 2021 LUT 1541 FF
Cyclone V -> 124 Mhz 1,368 ALMs
Cyclone IV -> 128 Mhz 2,826 LUT 1,474 FF
VexRiscv linux balanced (RV32IMA, 1.21 DMIPS/Mhz 2.27 Coremark/Mhz, with cache trashing, 4KB-I$, 4KB-D$, single cycle barrel shifter, catch exceptions, static branch, MMU, Supervisor, Compatible with mainstream linux) ->
Artix 7 -> 180 Mhz 2883 LUT 2130 FF
Cyclone V -> 131 Mhz 1,764 ALMs
Cyclone IV -> 121 Mhz 3,608 LUT 2,082 FF
```
The following configuration results in 1.44 DMIPS/MHz:
- 5 stage: F -> D -> E -> M -> WB
- single cycle ADD/SUB/Bitwise/Shift ALU
- branch/jump done in the E stage
- memory load values are bypassed in the WB stage (late result)
- 33 cycle division with bypassing in the M stage (late result)
- single cycle multiplication with bypassing in the WB stage (late result)
- dynamic branch prediction done in the F stage with a direct mapped target buffer cache (no penalties on correct predictions)
Note that, recently, the capability to remove the Fetch/Memory/WriteBack stage was added to reduce the area of the CPU, which ends up with a smaller CPU and a better DMIPS/Mhz for the small configurations.
## Dependencies
On Ubuntu 14:
```sh
# JAVA JDK 8
sudo add-apt-repository -y ppa:openjdk-r/ppa
sudo apt-get update
sudo apt-get install openjdk-8-jdk -y
sudo update-alternatives --config java
sudo update-alternatives --config javac
# Install SBT - https://www.scala-sbt.org/
echo "deb https://repo.scala-sbt.org/scalasbt/debian all main" | sudo tee /etc/apt/sources.list.d/sbt.list
echo "deb https://repo.scala-sbt.org/scalasbt/debian /" | sudo tee /etc/apt/sources.list.d/sbt_old.list
curl -sL "https://keyserver.ubuntu.com/pks/lookup?op=get&search=0x2EE0EA64E40A89B84B2DF73499E82A75642AC823" | sudo apt-key add
sudo apt-get update
sudo apt-get install sbt
# Verilator (for sim only, really needs 3.9+, in general apt-get will give you 3.8)
sudo apt-get install git make autoconf g++ flex bison
git clone http://git.veripool.org/git/verilator # Only first time
unsetenv VERILATOR_ROOT # For csh; ignore error if on bash
unset VERILATOR_ROOT # For bash
cd verilator
git pull # Make sure we're up-to-date
git checkout v4.216
autoconf # Create ./configure script
./configure
make
sudo make install
```
## CPU generation
You can find two example CPU instances in:
- `src/main/scala/vexriscv/demo/GenFull.scala`
- `src/main/scala/vexriscv/demo/GenSmallest.scala`
To generate the corresponding RTL as a `VexRiscv.v` file, run the following commands in the root directory of this repository:
```sh
sbt "runMain vexriscv.demo.GenFull"
```
or
```sh
sbt "runMain vexriscv.demo.GenSmallest"
```
NOTES:
- It could take time the first time you run it.
- The VexRiscv project may need an unreleased master-head of the SpinalHDL repo. If it fails to compile, just get the SpinalHDL repository and
do a "sbt clean compile publishLocal" in it as described in the dependencies chapter.
## Regression tests
[](https://travis-ci.org/SpinalHDL/VexRiscv)
To run tests (need java, scala, verilator), just do :
```sh
export VEXRISCV_REGRESSION_SEED=42
export VEXRISCV_REGRESSION_TEST_ID=
sbt "testOnly vexriscv.TestIndividualFeatures"
```
This will generate random VexRiscv configuration and test them with:
- ISA tests from https://github.com/riscv/riscv-tests/tree/master/isa and https://github.com/riscv/riscv-compliance
- Dhrystone benchmark
- Coremark benchmark
- Zephyr os
- Buildroot/Linux os
- Some handwritten tests to check the CSR, debug module and MMU plugins
You can rerun some specific test by setting VEXRISCV_REGRESSION_TEST_ID by their id. For instance, if you want to rerun :
- test_id_5_test_IBus_CachedS1024W1BPL32Relaxvexriscv.plugin.DYNAMIC_DBus_CachedS8192W2BPL16_MulDiv_MulDivFpga_Shift_FullLate_Branch_Late_Hazard_BypassAll_RegFile_SyncDR_Src__Csr_AllNoException_Decoder__Debug_None_DBus_NoMmu
- test_id_9_test_IBus_Simple1S2InjStagevexriscv.plugin.STATIC_DBus_SimpleLate_MulDiv_MulDivFpgaSimple_Shift_FullEarly_Branch_Late_Hazard_Interlock_RegFile_AsyncER_Src_AddSubExecute_Csr_None_Decoder__Debug_None_DBus_NoMmu
then :
```
export VEXRISCV_REGRESSION_TEST_ID=5,9
```
Also there is a few environnement variable that you can use to modulate the random generation :
| Parameters | range | description |
| ------------------------------------------- | ------------------ | ----------- |
| VEXRISCV_REGRESSION_SEED | Int | Seed used to generate the random configurations |
| VEXRISCV_REGRESSION_TEST_ID | \[Int\[,\Int\]\*\] | Random configuration that should be keeped and tested |
| VEXRISCV_REGRESSION_CONFIG_COUNT | Int | Number of random configurations |
| VEXRISCV_REGRESSION_CONFIG_RVC_RATE | 0.0-1.0 | Chance to generate a RVC config |
| VEXRISCV_REGRESSION_CONFIG_LINUX_RATE | 0.0-1.0 | Chance to generate a linux ready config |
| VEXRISCV_REGRESSION_CONFIG_MACHINE_OS_RATE | 0.0-1.0 | Chance to generate a machine mode OS ready config |
| VEXRISCV_REGRESSION_LINUX_REGRESSION | yes/no | Enable the linux test |
| VEXRISCV_REGRESSION_COREMARK | yes/no | Enable the Coremark test |
| VEXRISCV_REGRESSION_ZEPHYR_COUNT | Int | Number of zephyr tests to run on capable configs |
| VEXRISCV_REGRESSION_CONFIG_DEMW_RATE | 0.0-1.0 | Chance to generate a config with writeback stage |
| VEXRISCV_REGRESSION_CONFIG_DEM_RATE | 0.0-1.0 | Chance to generate a config with memory stage |
## Interactive debug of the simulated CPU via GDB OpenOCD and Verilator
To use this, you just need to use the same command as with running tests, but adding `DEBUG_PLUGIN_EXTERNAL=yes` in the make arguments.
This works for the `GenFull` configuration, but not for `GenSmallest`, as this configuration has no debug module.
Then, you can use the [OpenOCD RISC-V](https://github.com/SpinalHDL/openocd_riscv) tool to create a GDB server connected to the target (the simulated CPU), as follows:
```sh
#In the VexRiscv repository, to run the simulation on which one OpenOCD can connect itself =>
sbt "runMain vexriscv.demo.GenFull"
cd src/test/cpp/regression
make run DEBUG_PLUGIN_EXTERNAL=yes
#In the openocd git, after building it =>
src/openocd -c "set VEXRISCV_YAML PATH_TO_THE_GENERATED_CPU0_YAML_FILE" -f tcl/target/vexriscv_sim.cfg
#Run a GDB session with an elf RISCV executable (GenFull CPU)
YourRiscvToolsPath/bin/riscv32-unknown-elf-gdb VexRiscvRepo/src/test/resources/elf/uart.elf
target remote localhost:3333
monitor reset halt
load
continue
# Now it should print messages in the Verilator simulation of the CPU
```
## Using Eclipse to run and debug the software
### By using gnu-mcu-eclipse
You can download releases of the IDE here: <https://github.com/gnu-mcu-eclipse/org.eclipse.epp.packages/releases>
In the IDE, you can import a makefile project by:
- file -> import -> C/C++ -> existing Code as Makefile Project
- Select the folder which contains the makefile, then select "Cross GCC" (not "RISC-V Cross GCC")
To create a new debug configuration:
- run -> Debug Configurations -> GDB OpenOCD Debugging double click
- Look at https://drive.google.com/open?id=1c46tyEV0xLwOsk76b0y2qqs8CYy7Zq3f for a configuration example
### By using Zylin plugin (old)
You can use the Eclipse + Zylin embedded CDT plugin to do it (http://opensource.zylin.com/embeddedcdt.html). Tested with Helios Service Release 2 (http://www.Eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/helios/SR2/Eclipse-cpp-helios-SR2-linux-gtk-x86_64.tar.gz) and the corresponding zylin plugin.
To following commands will download Eclipse and install the plugin.
```sh
wget http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/helios/SR2/eclipse-cpp-helios-SR2-linux-gtk-x86_64.tar.gz
tar -xvzf download.php?file=%2Ftechnology%2Fepp%2Fdownloads%2Frelease%2Fhelios%2FSR2%2Feclipse-cpp-helios-SR2-linux-gtk-x86_64.tar.gz
cd eclipse
./eclipse -application org.eclipse.equinox.p2.director -repository http://opensource.zylin.com/zylincdt -installIU com.zylin.cdt.feature.feature.group/
```
See https://drive.google.com/drive/folders/1NseNHH05B6lmIXqQFVwK8xRjWE4ydeG-?usp=sharing to import a makefile project and create a debug configuration.
Note that sometimes Eclipse needs to be restarted in order to be able to place new breakpoints.
If you want to get more information about how all this JTAG / GDB stuff work, you can find great blog about it here :
<https://tomverbeure.github.io/2021/07/18/VexRiscv-OpenOCD-and-Traps.html>
## Briey SoC
As a demonstration, a SoC named Briey is implemented in `src/main/scala/vexriscv/demo/Briey.scala`. This SoC is very similar to
the [Pinsec SoC](https://spinalhdl.github.io/SpinalDoc-RTD/SpinalHDL/Legacy/pinsec/hardware_toplevel.html#):

To generate the Briey SoC Hardware:
```sh
sbt "runMain vexriscv.demo.Briey"
```
To run the verilator simulation of the Briey SoC, which can then be connected to OpenOCD/GDB, first get these dependencies:
```sh
sudo apt-get install build-essential xorg-dev libudev-dev libgl1-mesa-dev libglu1-mesa-dev libasound2-dev libpulse-dev libopenal-dev libogg-dev libvorbis-dev libaudiofile-dev libpng12-dev libfreetype6-dev libusb-dev libdbus-1-dev zlib1g-dev libdirectfb-dev libsdl2-dev
```
Then go in `src/test/cpp/briey` and run the simulation with (UART TX is printed in the terminal, VGA is displayed in a GUI):
```sh
make clean run
```
To connect OpenOCD (https://github.com/SpinalHDL/openocd_riscv) to the simulation :
```sh
src/openocd -f tcl/interface/jtag_tcp.cfg -c "set BRIEY_CPU0_YAML /home/spinalvm/Spinal/VexRiscv/cpu0.yaml" -f tcl/target/briey.cfg
```
You can find multiple software examples and demos here: <https://github.com/SpinalHDL/VexRiscvSocSoftware/tree/master/projects/briey>
You can find some FPGA projects which instantiate the Briey SoC here (DE1-SoC, DE0-Nano): https://drive.google.com/drive/folders/0B-CqLXDTaMbKZGdJZlZ5THAxRTQ?usp=sharing
Here are some measurements of Briey SoC timings and area:
```
Artix 7 -> 181 Mhz 3220 LUT 3181 FF
Cyclone V -> 142 Mhz 2,222 ALMs
Cyclone IV -> 130 Mhz 4,538 LUT 3,211 FF
```
## Murax SoC
Murax is a very light SoC (it fits in an ICE40 FPGA) which can work without any external components:
- VexRiscv RV32I[M]
- JTAG debugger (Eclipse/GDB/openocd ready)
- 8 kB of on-chip ram
- Interrupt support
- APB bus for peripherals
- 32 GPIO pin
- one 16 bits prescaler, two 16 bits timers
- one UART with tx/rx fifo
Depending on the CPU configuration, on the ICE40-hx8k FPGA with icestorm for synthesis, the full SoC has the following area/performance:
- RV32I interlocked stages => 51 Mhz, 2387 LC 0.45 DMIPS/Mhz
- RV32I bypassed stages => 45 Mhz, 2718 LC 0.65 DMIPS/Mhz
Its implementation can be found here: `src/main/scala/vexriscv/demo/Murax.scala`.
To generate the Murax SoC Hardware:
```sh
# To generate the SoC without any content in the ram
sbt "runMain vexriscv.demo.Murax"
# To generate the SoC with a demo program already in ram
sbt "runMain vexriscv.demo.MuraxWithRamInit"
```
The demo program included by default with `MuraxWithRamInit` will blink the
LEDs and echo characters received on the UART back to the user. To see this
when running the Verilator sim, type some text and press enter.
Then go in `src/test/cpp/murax` and run the simulation with:
```sh
make clean run
```
To connect OpenOCD (https://github.com/SpinalHDL/openocd_riscv) to the simulation:
```sh
src/openocd -f tcl/interface/jtag_tcp.cfg -c "set MURAX_CPU0_YAML /home/spinalvm/Spinal/VexRiscv/cpu0.yaml" -f tcl/target/murax.cfg
```
You can find multiple software examples and demos here: https://github.com/SpinalHDL/VexRiscvSocSoftware/tree/master/projects/murax
Here are some timing and area measurements of the Murax SoC:
```
Murax interlocked stages (0.45 DMIPS/Mhz, 8 bits GPIO) ->
Artix 7 -> 216 Mhz 1109 LUT 1201 FF
Cyclone V -> 182 Mhz 725 ALMs
Cyclone IV -> 147 Mhz 1,551 LUT 1,223 FF
iCE40 -> 64 Mhz 2422 LC (nextpnr)
MuraxFast bypassed stages (0.65 DMIPS/Mhz, 8 bits GPIO) ->
Artix 7 -> 224 Mhz 1278 LUT 1300 FF
Cyclone V -> 173 Mhz 867 ALMs
Cyclone IV -> 143 Mhz 1,755 LUT 1,258 FF
iCE40 -> 66 Mhz 2799 LC (nextpnr)
```
Some scripts to generate the SoC and call the icestorm toolchain can be found here: `scripts/Murax/`
A top level simulation testbench with the same features + a GUI are implemented with SpinalSim. You can find it in `src/test/scala/vexriscv/MuraxSim.scala`.
To run it :
```sh
# This will generate the Murax RTL + run its testbench. You need Verilator 3.9xx installated.
sbt "test:runMain vexriscv.MuraxSim"
```
## Running Linux
A default configuration is located in `src/main/scala/vexriscv/demo/Linux.scala`.
This file also contains
- The commands to compile the buildroot image
- How to run the Verilator simulation in interative mode
There is currently no SoC to run it on hardware, it is WIP. But the CPU simulation can already boot linux and run user space applications (even python).
Note that VexRiscv can run Linux on both cache full and cache less design.
## Build the RISC-V GCC
A prebuild GCC toolsuite can be found here:
- https://www.sifive.com/software/ => Prebuilt RISC‑V GCC Toolchain and Emulator
The VexRiscvSocSoftware makefiles are expecting to find this prebuild version in /opt/riscv/__contentOfThisPreBuild__
```sh
version=riscv64-unknown-elf-gcc-8.3.0-2019.08.0-x86_64-linux-ubuntu14
wget -O riscv64-unknown-elf-gcc.tar.gz riscv https://static.dev.sifive.com/dev-tools/$version.tar.gz
tar -xzvf riscv64-unknown-elf-gcc.tar.gz
sudo mv $version /opt/riscv
echo 'export PATH=/opt/riscv/bin:$PATH' >> ~/.bashrc
```
If you want to compile the rv32i and rv32im GCC toolchain from source code and install them in `/opt/`, do the following (will take one hour):
```sh
# Be carefull, sometime the git clone has issue to successfully clone riscv-gnu-toolchain.
sudo apt-get install autoconf automake autotools-dev curl libmpc-dev libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf libtool patchutils bc zlib1g-dev -y
git clone --recursive https://github.com/riscv/riscv-gnu-toolchain riscv-gnu-toolchain
cd riscv-gnu-toolchain
echo "Starting RISC-V Toolchain build process"
ARCH=rv32im
rmdir -rf $ARCH
mkdir $ARCH; cd $ARCH
../configure --prefix=/opt/$ARCH --with-arch=$ARCH --with-abi=ilp32
sudo make -j4
cd ..
ARCH=rv32i
rmdir -rf $ARCH
mkdir $ARCH; cd $ARCH
../configure --prefix=/opt/$ARCH --with-arch=$ARCH --with-abi=ilp32
sudo make -j4
cd ..
echo -e "\\nRISC-V Toolchain installation completed!"
```
## CPU parametrization and instantiation example
You can find many examples of different configurations in the https://github.com/SpinalHDL/VexRiscv/tree/master/src/main/scala/vexriscv/demo folder.
Here is one such example:
```scala
import vexriscv._
import vexriscv.plugin._
//Instanciate one VexRiscv
val cpu = new VexRiscv(
//Provide a configuration instance
config = VexRiscvConfig(
//Provide a list of plugins which will futher add their logic into the CPU
plugins = List(
new IBusSimplePlugin(
resetVector = 0x00000000l,
cmdForkOnSecondStage = true,
cmdForkPersistence = true
),
new DBusSimplePlugin(
catchAddressMisaligned = false,
catchAccessFault = false
),
new DecoderSimplePlugin(
catchIllegalInstruction = false
),
new RegFilePlugin(
regFileReadyKind = Plugin.SYNC,
zeroBoot = true
),
new IntAluPlugin,
new SrcPlugin(
separatedAddSub = false,
executeInsertion = false
),
new LightShifterPlugin,
new HazardSimplePlugin(
bypassExecute = false,
bypassMemory = false,
bypassWriteBack = false,
bypassWriteBackBuffer = false
),
new BranchPlugin(
earlyBranch = false,
catchAddressMisaligned = false
),
new YamlPlugin("cpu0.yaml")
)
)
)
```
## Add a custom instruction to the CPU via the plugin system
Here is an example of a simple plugin which adds a simple SIMD_ADD instruction:
```scala
import spinal.core._
import vexriscv.plugin.Plugin
import vexriscv.{Stageable, DecoderService, VexRiscv}
//This plugin example will add a new instruction named SIMD_ADD which does the following:
//
//RD : Regfile Destination, RS : Regfile Source
//RD( 7 downto 0) = RS1( 7 downto 0) + RS2( 7 downto 0)
//RD(16 downto 8) = RS1(16 downto 8) + RS2(16 downto 8)
//RD(23 downto 16) = RS1(23 downto 16) + RS2(23 downto 16)
//RD(31 downto 24) = RS1(31 downto 24) + RS2(31 downto 24)
//
//Instruction encoding :
//0000011----------000-----0110011
// |RS2||RS1| |RD |
//
//Note : RS1, RS2, RD positions follow the RISC-V spec and are common for all instruction of the ISA
class SimdAddPlugin extends Plugin[VexRiscv]{
//Define the concept of IS_SIMD_ADD signals, which specify if the current instruction is destined for this plugin
object IS_SIMD_ADD extends Stageable(Bool)
//Callback to setup the plugin and ask for different services
override def setup(pipeline: VexRiscv): Unit = {
import pipeline.config._
//Retrieve the DecoderService instance
val decoderService = pipeline.service(classOf[DecoderService])
//Specify the IS_SIMD_ADD default value when instructions are decoded
decoderService.addDefault(IS_SIMD_ADD, False)
//Specify the instruction decoding which should be applied when the instruction matches the 'key' parttern
decoderService.add(
//Bit pattern of the new SIMD_ADD instruction
key = M"0000011----------000-----0110011",
//Decoding specification when the 'key' pattern is recognized in the instruction
List(
IS_SIMD_ADD -> True,
REGFILE_WRITE_VALID -> True, //Enable the register file write
BYPASSABLE_EXECUTE_STAGE -> True, //Notify the hazard management unit that the instruction result is already accessible in the EXECUTE stage (Bypass ready)
BYPASSABLE_MEMORY_STAGE -> True, //Same as above but for the memory stage
RS1_USE -> True, //Notify the hazard management unit that this instruction uses the RS1 value
RS2_USE -> True //Same as above but for RS2.
)
)
}
override def build(pipeline: VexRiscv): Unit = {
import pipeline._
import pipeline.config._
//Add a new scope on the execute stage (used to give a name to signals)
execute plug new Area {
//Define some signals used internally by the plugin
val rs1 = execute.input(RS1).asUInt
//32 bits UInt value of the regfile[RS1]
val rs2 = execute.input(RS2).asUInt
val rd = UInt(32 bits)
//Do some computations
rd(7 downto 0) := rs1(7 downto 0) + rs2(7 downto 0)
rd(16 downto 8) := rs1(16 downto 8) + rs2(16 downto 8)
rd(23 downto 16) := rs1(23 downto 16) + rs2(23 downto 16)
rd(31 downto 24) := rs1(31 downto 24) + rs2(31 downto 24)
//When the instruction is a SIMD_ADD, write the result into the register file data path.
when(execute.input(IS_SIMD_ADD)) {
execute.output(REGFILE_WRITE_DATA) := rd.asBits
}
}
}
}
```
If you want to add this plugin to a given CPU, you just need to add it to its parameterized plugin list.
This example is a very simple one, but each plugin can really have access to the whole CPU:
- Halt a given stage of the CPU
- Unschedule instructions
- Emit an exception
- Introduce a new instruction decoding specification
- Ask to jump the PC somewhere
- Read signals published by other plugins
- Override published signals values
- Provide an alternative implementation
- ...
As a demonstration, this SimdAddPlugin was integrated in the `src/main/scala/vexriscv/demo/GenCustomSimdAdd.scala` CPU configuration
and is self-tested by the `src/test/cpp/custom/simd_add` application by running the following commands:
```sh
# Generate the CPU
sbt "runMain vexriscv.demo.GenCustomSimdAdd"
cd src/test/cpp/regression/
# Optionally add TRACE=yes if you want to get the VCD waveform from the simulation.
# Also you have to know that, by default, the testbench introduce instruction/data bus stall.
# Note the CUSTOM_SIMD_ADD flag is set to yes.
make clean run IBUS=SIMPLE DBUS=SIMPLE CSR=no MMU=no DEBUG_PLUGIN=no MUL=no DIV=no DHRYSTONE=no REDO=2 CUSTOM_SIMD_ADD=yes
```
To retrieve the plugin related signals in your waveform viewer, just filter with `simd`.
## Adding a new CSR via the plugin system
Here are two examples about how to add a custom CSR to the CPU via the plugin system:
https://github.com/SpinalHDL/VexRiscv/blob/master/src/main/scala/vexriscv/demo/CustomCsrDemoPlugin.scala
The first one (`CustomCsrDemoPlugin`) adds an instruction counter and a clock cycle counter into the CSR mapping (and also do tricky stuff as a demonstration).
The second one (`CustomCsrDemoGpioPlugin`) creates a GPIO peripheral directly mapped into the CSR.
## CPU clock and resets
Without the debug plugin, the CPU will have a standard `clk` input and a `reset` input. But with the debug plugin the situation is the following:
- `clk`: as before, the clock which drives the whole CPU design, including the debug logic
- `reset`: reset all the CPU states except the debug logic
- `debugReset`: reset the debug logic of the CPU
- `debug_resetOut`: a CPU output signal which allows the JTAG to reset the CPU + the memory interconnect + the peripherals
So here is the reset interconnect, in case you use the debug plugin:
```
VexRiscv
+------------------+
| |
toplevelReset >----+--------> debugReset |
| | |
| +-----< debug_resetOut |
| | | |
+--or>-+-> reset |
| | |
| +------------------+
|
+-> Interconnect / Peripherals
```
## VexRiscv Architecture
VexRiscv is implemented via a 5 stage in-order pipeline on which many optional and complementary plugins add functionalities to provide a functional RISC-V CPU.
This approach is completely unconventional and only possible through meta hardware description languages (SpinalHDL, in the current case) but has proven its advantages
via the VexRiscv implementation:
- You can swap/turn on/turn off parts of the CPU directly via the plugin system
- You can add new functionalities/instructions without having to modify any of the sources of the CPU
- It allows the CPU configuration to cover a very large spectrum of implementations without cooking spaghetti code
- It allows your codebase to truly produce a parametrized CPU design
If you generate the CPU without any plugin, it will only contain the definition of the 5 pipeline stages and their basic arbitration, but nothing else,
and everything else, including the program counter is added into the CPU via plugins.
### FPU
Features :
- Support IEEE 754 float and optionaly double
- Implement Subnormal (few cycles lost in case of subnormal load/store)
- Implement exceptions flags
- The FPU can be shared between multiple CPU
- Can be integrated inside or outside the CPU via the FpuPlugin
- Fully pipelined, can produce one result per cycle for most operations (add,sub, mul, fma, load, store), as long there is no inter-dependancies
- Implement multiplication using multiple sub multiplication operations in parallel ("FPGA friendly")
- Division done with radix 4 (2 bits per cycle)
- Square root done with radix 2 (1 bit per cycle)
- Currently only compatible with the DBusCachedPlugin for load and store
- 64 bits Load and store can be done in one cycle via the DBusCachedPlugin (even if VexRiscv is RV32)
Accuracy, roundings (RNE, RTZ, RDN, RUP, RMM) and compliance:
- Fully implemented excepted in the cases specified bellow
- In FMA, the result of the multiplication is rounded before the addition (keep mantissa width + 2 bits)
- A very special corner case of underflow flag do not follow IEEE 754 (rounding from subnormal to normal number)
- Very specific, but SGNJ instruction will not mutate the value from/to F32/F64 (no NaN-boxing mutation)
There is a diagram of the FPU design and its CPU integration :

The FPU can be parametrized with FpuParameter data structure :
| Parameters | type | description |
| ------ | ----------- | ------ |
| withDouble | Boolean | Enable 64 bits floating point (32 bits always enabled) |
| asyncRegFile | Boolean | Implement the register file using combinatorial reads (instead of syncronous reads) |
| mulWidthA | Boolean | Specify the width of the left operand of multiplication blocks |
| mulWidthB | Boolean | Same than above but the the right operand |
Synthesis results of the FPU itself, without the CPU integration, on the fast speed grade :
```
Fpu 32 bits ->
Artix 7 relaxed -> 135 Mhz 1786 LUT 1778 FF
Artix 7 FMax -> 205 Mhz 2101 LUT 1778 FF
Fpu 64/32 bits ->
Artix 7 relaxed -> 101 Mhz 3336 LUT 3033 FF
Artix 7 FMax -> 165 Mhz 3728 LUT 3175 FF
```
Note that if you want to debug FPU code via the openocd_riscv.vexriscv target, you need to use the GDB from :
https://static.dev.sifive.com/dev-tools/riscv64-unknown-elf-gcc-20171231-x86_64-linux-centos6.tar.gz
More recent versions of gdb will not detect the FPU. Also, the openocd_riscv.vexriscv can't read CSR/FPU registers, so to have visibility on the floating points values, you need to compile your code in -O0, which will force values to be stored in memory (and so, be visible)
### Plugins
This chapter describes the currently implemented plugins.
- [IBusSimplePlugin](#ibussimpleplugin)
- [IBusCachedPlugin](#ibuscachedplugin)
- [DecoderSimplePlugin](#decodersimpleplugin)
- [RegFilePlugin](#regfileplugin)
- [HazardSimplePlugin](#hazardsimpleplugin)
- [SrcPlugin](#srcplugin)
- [IntAluPlugin](#intaluplugin)
- [LightShifterPlugin](#lightshifterplugin)
- [FullBarrelShifterPlugin](#fullbarrelshifterplugin)
- [BranchPlugin](#branchplugin)
- [DBusSimplePlugin](#dbussimpleplugin)
- [DBusCachedPlugin](#dbuscachedplugin)
- [MulPlugin](#mulplugin)
- [DivPlugin](#divplugin)
- [MulDivIterativePlugin](#muldiviterativeplugin)
- [CsrPlugin](#csrplugin)
- [StaticMemoryTranslatorPlugin](#staticmemorytranslatorplugin)
- [MemoryTranslatorPlugin](#memorytranslatorplugin)
- [DebugPlugin](#debugplugin)
- [YamlPlugin](#yamlplugin)
- [FpuPlugin](#fpuplugin)
#### IBusSimplePlugin
This plugin implements the CPU frontend (instruction fetch) via a very simple and neutral memory interface going outside the CPU.
| Parameters | type | description |
| ------ | ----------- | ------ |
| catchAccessFault | Boolean | When true, an instruction read response with read error asserted results in a CPU exception trap. |
| resetVector | BigInt | Address of the program counter after the reset. |
| cmdForkOnSecondStage | Boolean | When false, branches immediately update the program counter. This minimizes branch penalties but might reduce FMax because the instruction bus address signal is a combinatorial path. When true, this combinatorial path is removed and the program counter is updated one cycle after a branch is detected. While FMax may improve, an additional branch penalty will be incurred as well. |
| cmdForkPersistence | Boolean | When false, requests on the iBus can disappear/change before they are acknowledged. This reduces area but isn't safe/supported by many arbitration/slaves. When true, once initiated, iBus requests will stay until they are acknowledged. |
| compressedGen | Boolean | Enable RISC-V compressed instruction (RVC) support. |
| busLatencyMin | Int | Specifies the minimal latency between the iBus.cmd and iBus.rsp. A corresponding number of stages are added to the frontend to keep the IPC to 1.|
| injectorStage | Boolean | When true, a stage between the frontend and the decode stage of the CPU is added to improve FMax. (busLatencyMin + injectorStage) should be at least two. |
| prediction | BranchPrediction | Can be set to NONE/STATIC/DYNAMIC/DYNAMIC_TARGET to specify the branch predictor implementation. See below for more details. |
| historyRamSizeLog2 | Int | Specify the number of entries in the direct mapped prediction cache of DYNAMIC/DYNAMIC_TARGET implementation. 2 pow historyRamSizeLog2 entries. |
Here is the SimpleBus interface definition:
```scala
case class IBusSimpleCmd() extends Bundle{
val pc = UInt(32 bits)
}
case class IBusSimpleRsp() extends Bundle with IMasterSlave{
val error = Bool
val inst = Bits(32 bits)
override def asMaster(): Unit = {
out(error,inst)
}
}
case class IBusSimpleBus(interfaceKeepData : Boolean) extends Bundle with IMasterSlave{
var cmd = Stream(IBusSimpleCmd())
var rsp = Flow(IBusSimpleRsp())
override def asMaster(): Unit = {
master(cmd)
slave(rsp)
}
}
```
**Important** : check out the cmdForkPersistence parameter, because if it is not set, it can break the iBus compatibility with your memory system (unless you externaly add some buffers).
Setting cmdForkPersistence and cmdForkOnSecondStage improves iBus cmd timings.
The iBusSimplePlugin includes bridges to convert from the IBusSimpleBus to AXI4, Avalon, and Wishbone interfaces.
This plugin implements a jump interface that allows all other plugins to issue a jump:
```scala
trait JumpService{
def createJumpInterface(stage : Stage) : Flow[UInt]
}
```
The stage argument specifies the stage from which the jump is asked. This allows the PcManagerSimplePlugin plugin to manage priorities between jump requests from
diffent stages.
#### IBusCachedPlugin
Simple and light multi-way instruction cache.
| Parameters | type | description |
| ------ | ----------- | ------ |
| resetVector | BigInt | Address of the program counter after the reset. |
| relaxedPcCalculation | Boolean | When false, branches immediately update the program counter. This minimizes branch penalties but might reduce FMax because the instruction bus address signal is a combinatorial path. When true, this combinatorial path is removed and the program counter is updated one cycle after a branch is detected. While FMax may improve, an additional branch penalty will be incurred as well. |
| prediction | BranchPrediction | Can be set to NONE/STATIC/DYNAMIC/DYNAMIC_TARGET to specify the branch predictor implementation. See below for more details. |
| historyRamSizeLog2 | Int | Specify the number of entries in the direct mapped prediction cache of DYNAMIC/DYNAMIC_TARGET implementation. 2 pow historyRamSizeLog2 entries |
| compressedGen | Boolean | Enable RISC-V compressed instruction (RVC) support. |
| config.cacheSize | Int | Total storage capacity of the cache in bytes. |
| config.bytePerLine | Int | Number of bytes per cache line |
| config.wayCount | Int | Number of cache ways |
| config.twoCycleRam | Boolean | Check the tags values in the decode stage instead of the fetch stage to relax timings |
| config.asyncTagMemory | Boolean | Read the cache tags in an asynchronous manner instead of syncronous one |
| config.addressWidth | Int | CPU address width. Should be 32 |
| config.cpuDataWidth | Int | CPU data width. Should be 32 |
| config.memDataWidth | Int | Memory data width. Could potentialy be something else than 32, but only 32 is currently tested |
| config.catchIllegalAccess | Boolean | Catch when a memory access is done on non-valid memory address (MMU) |
| config.catchAccessFault | Boolean | Catch when the memeory bus is responding with an error |
| config.catchMemoryTranslationMiss | Boolean | Catch when the MMU miss a TLB |
Note: If you enable the twoCycleRam option and if wayCount is bigger than one, then the register file plugin should be configured to read the regFile in an asynchronous manner.
#### DecoderSimplePlugin
This plugin provides instruction decoding capabilities to other plugins.
For instance, for a given instruction, the pipeline hazard plugin needs to know if it uses the register file source 1/2 in order to stall the pipeline until the hazard is gone.
Each plugin that implements an instruction provides this kind of information to the DecoderSimplePlugin plugin.
| Parameters | type | description |
| ------ | ----------- | ------ |
| catchIllegalInstruction | Boolean | When true, instructions that don't match a decoding specification will generate a trap exception |
Here is a usage example:
```scala
//Specify the instruction decoding which should be applied when the instruction matches the 'key' pattern
decoderService.add(
//Bit pattern of the new instruction
key = M"0000011----------000-----0110011",
//Decoding specification when the 'key' pattern is recognized in the instruction
List(
IS_SIMD_ADD -> True, //Inform the pipeline that the current instruction is a SIMD_ADD instruction
REGFILE_WRITE_VALID -> True, //Notify the hazard management unit that this instruction writes to the register file
BYPASSABLE_EXECUTE_STAGE -> True, //Notify the hazard management unit that the instruction result is already accessible in the EXECUTE stage (Bypass ready)
BYPASSABLE_MEMORY_STAGE -> True, //Same as above but for the memory stage
RS1_USE -> True, //Notify the hazard management unit that this instruction uses the RS1 value
RS2_USE -> True //Same than above but for RS2.
)
)
}
```
This plugin operates in the Decode stage.
#### RegFilePlugin
This plugin implements the register file.
| Parameters | type | description |
| ------ | ----------- | ------ |
| regFileReadyKind | RegFileReadKind | Can be set to ASYNC or SYNC. Specifies the kind of memory read used to implement the register file. ASYNC means zero cycle latency memory read, while SYNC means one cycle latency memory read which can be mapped into standard FPGA memory blocks |
| zeroBoot | Boolean | Load all registers with zeroes at the beginning of the simulation to keep everything deterministic in logs/traces|
This register file use a `don't care` read-during-write policy, so the bypassing/hazard plugin should take care of this.
If you get a `Missing inserts : INSTRUCTION_ANTICIPATE` error, that's because the RegFilePlugin is configured to use SYNC memory read ports to access the register file, but the IBus plugin configuration can't provide the instruction's register file read address one cycle before the decode stage. To workaround that you can :
- Configure the RegFilePlugin to implement the register file read in a asyncronus manner (ASYNC), if your target device support such things
- If you use the IBusSimplePlugin, you need to enable the injectorStage configuration
- If you use the IBusCachedPlugin, you can either enable the injectorStage, or set twoCycleCache + twoCycleRam to false.
#### HazardSimplePlugin
This plugin checks the pipeline instruction dependencies and, if necessary or possible, will stop the instruction in the decoding stage or bypass the instruction results
from the later stages of the decode stage.
Since the register file is implemented with a `don't care` read-during-write policy, this plugin also manages these kind of hazards.
| Parameters | type | description |
| ------ | ----------- | ------ |
| bypassExecute | Boolean | Enable the bypassing of instruction results coming from the Execute stage |
| bypassMemory | Boolean | Enable the bypassing of instruction results coming from the Memory stage |
| bypassWriteBack | Boolean | Enable the bypassing of instruction results coming from the WriteBack stage |
| bypassWriteBackBuffer | Boolean | Enable the bypassing of the previous cycle register file written value |
#### SrcPlugin
This plugin muxes different input values to produce SRC1/SRC2/SRC_ADD/SRC_SUB/SRC_LESS values which are common values used by many plugins in the execute stage (ALU/Branch/Load/Store).
| Parameters | type | description |
| ------ | ----------- | ------ |
| separatedAddSub | RegFileReadKind | By default SRC_ADD/SRC_SUB are generated from a single controllable adder/substractor, but if this is set to true, it use separate adder/substractors |
| executeInsertion | Boolean | By default SRC1/SRC2 are generated in the Decode stage, but if this parameter is true, it is done in the Execute stage (It will relax the bypassing network) |
Except for SRC1/SRC2, this plugin does everything at the begining of Execute stage.
#### IntAluPlugin
This plugin implements all ADD/SUB/SLT/SLTU/XOR/OR/AND/LUI/AUIPC instructions in the execute stage by using the SrcPlugin outputs. It is a really simple plugin.
The result is injected into the pipeline directly at the end of the execute stage.
#### LightShifterPlugin
Implements SLL/SRL/SRA instructions by using an iterative shifter register, while using one cycle per bit shift.
The result is injected into the pipeline directly at the end of the execute stage.
#### FullBarrelShifterPlugin
Implements SLL/SRL/SRA instructions by using a full barrel shifter, so it executes all shifts in a single cycle.
| Parameters | type | description |
| ------ | ----------- | ------ |
| earlyInjection | Boolean | By default the result of the shift is injected into the pipeline in the Memory stage to relax timings, but if this option is true it will be done in the Execute stage |
#### BranchPlugin
This plugin implements all branch/jump instructions (JAL/JALR/BEQ/BNE/BLT/BGE/BLTU/BGEU) with primitives used by the cpu frontend plugins to implement branch prediction. The prediction implementation is set in the frontend plugins (IBusX).
| Parameters | type | description |
| ------ | ----------- | ------ |
| earlyBranch | Boolean | By default the branch is done in the Memory stage to relax timings, but if this option is set it's done in the Execute stage|
| catchAddressMisaligned | Boolean | If a jump/branch is done in an unaligned PC address, it will fire an trap exception |
Each miss predicted jumps will produce between 2 and 4 cycles penalty depending the `earlyBranch` and the `PcManagerSimplePlugin.relaxedPcCalculation` configurations
##### Prediction NONE
No prediction: each PC change due to a jump/branch will produce a penalty.
##### Prediction STATIC
In the decode stage, a conditional branch pointing backwards or a JAL is branched speculatively. If the speculation is right, the branch penalty is reduced to a single cycle,
otherwise the standard penalty is applied.
##### Prediction DYNAMIC
Same as the STATIC prediction, except that to do the prediction, it uses a direct mapped 2 bit history cache (BHT) which remembers if the branch is more likely to be taken or not.
##### Prediction DYNAMIC_TARGET
This predictor uses a direct mapped branch target buffer (BTB) in the Fetch stage which stores the PC of the instruction, the target PC of the instruction and a 2 bit history to remember
if the branch is more likely to be taken or not. This is actually the most efficient branch predictor implemented on VexRiscv, because when the branch prediction is right, it produces no branch penalty.
The downside is that this predictor has a long combinatorial path coming from the prediction cache read port to the programm counter, passing through the jump interface.
#### DBusSimplePlugin
This plugin implements the load and store instructions (LB/LH/LW/LBU/LHU/LWU/SB/SH/SW) via a simple memory bus going out of the CPU.
| Parameters | type | description |
| ------ | ----------- | ------ |
| catchAddressMisaligned | Boolean | If a memory access is done to an unaligned memory address, it will fire a trap exception |
| catchAccessFault | Boolean | If a memory read returns an error, it will fire a trap exception |
| earlyInjection | Boolean | By default, the memory read values are injected into the pipeline in the WriteBack stage to relax the timings. If this parameter is true, it's done in the Memory stage |
Here is the DBusSimpleBus
```scala
case class DBusSimpleCmd() extends Bundle{
val wr = Bool
val address = UInt(32 bits)
val data = Bits(32 bit)
val size = UInt(2 bit)
}
case class DBusSimpleRsp() extends Bundle with IMasterSlave{
val ready = Bool
val error = Bool
val data = Bits(32 bit)
override def asMaster(): Unit = {
out(ready,error,data)
}
}
case class DBusSimpleBus() extends Bundle with IMasterSlave{
val cmd = Stream(DBusSimpleCmd())
val rsp = DBusSimpleRsp()
override def asMaster(): Unit = {
master(cmd)
slave(rsp)
}
}
```
Note that there are bridges available that can convert this interface into AXI4 and Avalon.
There is at least one cycle latency between a cmd and the corresponding rsp. The rsp.ready flag should be false after a read cmd until the rsp is present.
#### DBusCachedPlugin
Multi way cache implementation with writh-through and allocate on read strategy. (Documentation is WIP)
You can invalidate the whole cache via the 0x500F instruction, and you can invalidate a address range (single line size) via the instruction 0x500F | RS1 << 15 where RS1 should not be X0 and point to one byte of the desired address to invalidate.
#### MulPlugin
Implements the multiplication instruction from the RISC-V M extension. Its implementation was done in a FPGA friendly way by using 4 17*17 bit multiplications.
The processing is fully pipelined between the Execute/Memory/Writeback stage. The results of the instructions are always inserted in the WriteBack stage.
#### DivPlugin
Implements the division/modulo instruction from the RISC-V M extension. It is done in a simple iterative way which always takes 34 cycles. The result is inserted into the
Memory stage.
This plugin is now based on MulDivIterativePlugin.
#### MulDivIterativePlugin
This plugin implements the multiplication, division and modulo of the RISC-V M extension in an iterative way, which is friendly for small FPGAs that don't have DSP blocks.
This plugin is able to unroll the iterative calculation process to reduce the number of cycles used to execute mul/div instructions.
| Parameters | type | description |
| ------ | ----------- | ------ |
| genMul | Boolean | Enables multiplication support. Can be set to false if you want to use the MulPlugin instead |
| genDiv | Boolean | Enables division support |
| mulUnrollFactor | Int | Number of combinatorial stages used to speed up the multiplication, should be > 0 |
| divUnrollFactor | Int | Number of combinatorial stages used to speed up the division, should be > 0 |
The number of cycles used to execute a multiplication is '32/mulUnrollFactor'
The number of cycles used to execute a division is '32/divUnrollFactor + 1'
Both mul/div are processed in the memory stage (late result).
#### CsrPlugin
Implements most of the Machine mode and a few of the User mode registers, as specified in the RISC-V priviledged spec.
The access mode of most of the CSR is parameterizable to reduce the area usage of unneeded features.
(CsrAccess can be `NONE/READ_ONLY/WRITE_ONLY/READ_WRITE`)
| Parameters | type | description |
| ------ | ----------- | ------ |
| catchIllegalAccess | Boolean | |
| mvendorid | BigInt | |
| marchid | BigInt | |
| mimpid | BigInt | |
| mhartid | BigInt | |
| misaExtensionsInit | Int | |
| misaAccess | CsrAccess | |
| mtvecAccess | CsrAccess | |
| mtvecInit | BigInt | |
| mepcAccess | CsrAccess | |
| mscratchGen | Boolean | |
| mcauseAccess | CsrAccess | |
| mbadaddrAccess | CsrAccess | |
| mcycleAccess | CsrAccess | |
| minstretAccess | CsrAccess | |
| ucycleAccess | CsrAccess | |
| wfiGen | Boolean | |
| ecallGen | Boolean | |
If an interrupt occurs, before jumping to mtvec, the plugin will stop the Prefetch stage and wait for all the instructions in the later pipeline stages to complete their execution.
If an exception occur, the plugin will kill the corresponding instruction, flush all previous instructions, and wait until the previously killed instructions reach the WriteBack
stage before jumping to mtvec.
#### StaticMemoryTranslatorPlugin
Static memory translator plugin which allows to specify which range of the memory addresses is I/O mapped and shouldn't be cached.
| Parameters | type | description |
| ------ | ----------- | ------ |
| ioRange | UInt => Bool | Function reference which eat an address and return true if the address should be uncached. ex : ioRange= _(31 downto 28) === 0xF => all 0xFXXXXXXX will be uncached|
#### MmuPlugin
Hardware refilled MMU implementation. Allows other plugins such as DBusCachedPlugin/IBusCachedPlugin to instanciate memory address translation ports. Each port has a small dedicated
fully associative TLB cache which is refilled automaticaly via a dbus access sharing.
#### PmpPlugin
This is a physical memory protection (PMP) plugin which conforms to the latest RISC-V privilege specification. PMP is configured by writing two special CSRs: `pmpcfg#` and `pmpaddr#`. The former contains the permissions and addressing modes for four protection regions, and the latter contains the encoded start address for a single region. Since the actual region bounds must be computed from the values written to these registers, writing them takes a few CPU cylces. This delay is necessary in order to centralize all of the decoding logic into a single component. Otherwise, it would have to be duplicated for each region, even though the decoding operation happens only when PMP is reprogrammed (e.g., on some context switches).
#### DebugPlugin
This plugin implements enough CPU debug features to allow comfortable GDB/Eclipse debugging. To access those debug features, it provides a simple memory bus interface.
The JTAG interface is provided by another bridge, which makes it possible to efficiently connect multiple CPUs to the same JTAG.
| Parameters | type | description |
| ------ | ----------- | ------ |
| debugClockDomain | ClockDomain | As the debug unit is able to reset the CPU itself, it should use another clock domain to avoid killing itself (only the reset wire should differ) |
The internals of the debug plugin are done in a manner which reduces the area usage and the FMax impact of this plugin.
Here is the simple bus to access it, the rsp comes one cycle after the request:
```scala
case class DebugExtensionCmd() extends Bundle{
val wr = Bool
val address = UInt(8 bit)
val data = Bits(32 bit)
}
case class DebugExtensionRsp() extends Bundle{
val data = Bits(32 bit)
}
case class DebugExtensionBus() extends Bundle with IMasterSlave{
val cmd = Stream(DebugExtensionCmd())
val rsp = DebugExtensionRsp()
override def asMaster(): Unit = {
master(cmd)
in(rsp)
}
}
```
Here is the register mapping:
```
Read address 0x00 ->
bit 0 : resetIt
bit 1 : haltIt
bit 2 : isPipBusy
bit 3 : haltedByBreak
bit 4 : stepIt
Write address 0x00 ->
bit 4 : stepIt
bit 16 : set resetIt
bit 17 : set haltIt
bit 24 : clear resetIt
bit 25 : clear haltIt and haltedByBreak
Read Address 0x04 ->
bits (31 downto 0) : Last value written into the register file
Write Address 0x04 ->
bits (31 downto 0) : Instruction that should be pushed into the CPU pipeline for debug purposes
```
The OpenOCD port is here: <https://github.com/SpinalHDL/openocd_riscv>
#### YamlPlugin
This plugin offers a service to other plugins to generate a useful Yaml file describing the CPU configuration. It contains, for instance, the sequence of instructions required
to flush the data cache (information used by openocd).
#### FpuPlugin
Allow the integration of a internal or a external FPU into VexRiscv (See the FPU chapter)
| Parameters | type | description |
| ------ | ----------- | ------ |
| externalFpu | Boolean | When false the FPU is instanciated in Vex, else the plugin has a `port` interface to which you can connect an external FPU |
| p | FpuParameter | Parameter with which the connected FPU will be created |
#### AesPlugin
This plugin allow to accelerate AES encryption/decryption by using an internal ROM to solve SBOX and permutations, allowing in practice to execute one AES round in about 21 cycles.
For more documentation, check src/main/scala/vexriscv/plugin/AesPlugin.scala, a software C driver can be found here : <https://github.com/SpinalHDL/SaxonSoc/blob/dev-0.3/software/standalone/driver/aes_custom.h>
It was also ported on libressl via the following patch :
<https://github.com/SpinalHDL/buildroot-spinal-saxon/blob/main/patches/libressl/0000-vexriscv-aes.patch>
Speed up of 4 was observed in libressl running in linux. <https://github.com/SpinalHDL/SaxonSoc/pull/53#issuecomment-730133020>
|