1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
--Copyright 2013 Friedrich Beckmann, Hochschule Augsburg
--
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
-- I2C or 2-Wire Bus
-- To start a transaction, pull the data line to 'L' while the clock is still 'H'
-- 7 Bits Address
-- 1 Bit R/W (0 = Write, 1 = Read)
-- 1 Bit ACK (from Slave 0 if o.k.)
-- 8 Bits Data 15..8
-- 1 Bit Ack from slave (0 if o.k.)
-- 8 Bits Data 7..0
-- 1 Bit Ack from slave (0 if o.k.)
entity i2c is
port (
clk_i: in std_ulogic;
reset_ni: in std_ulogic;
load_i: in std_ulogic;
data_i: in std_ulogic_vector(23 downto 0);
i2c_clk_o: out std_ulogic;
i2c_dat_o: out std_ulogic;
i2c_dat_i: in std_ulogic;
busy_o: out std_ulogic
);
end;
architecture rtl of i2c is
-- Clock divider section
constant fd_c : integer := 50000000/20000/2; -- 50 MHz system clock, 20 kHz I2C clock
signal clk_cnt : integer range 0 to fd_c;
signal clk_cnt_reset, clk_cnt_done : std_ulogic;
-- i2c data register index
signal idx : integer range 0 to 27;
signal idx_inc : std_ulogic;
signal idx_reset : std_ulogic;
-- i2c registers with and without data for the acknowledgment section
-- In cycle 8, 17 and 26 there is an i2c acknowledgement cycle where the master
-- drives Z and the slave will drive "0" when everything is o.k.
-- The input data from the interface is without these acknowledgement bits
signal load_i2c_reg_without_ack : std_ulogic;
signal i2c_reg_without_ack : std_ulogic_vector(23 downto 0);
signal i2c_reg_with_ack : std_ulogic_vector(0 to 27);
-- Statemachine
type state_t is (idle_s, start_s, data_hold_s, data_s, clock_high_s, stop_s);
signal state, next_state : state_t;
-- Selection for the i2c output data
type i2c_dat_sel_t is (sel_old, sel_reg, sel_one, sel_zero);
signal i2c_dat_sel : i2c_dat_sel_t;
type i2c_clk_sel_t is (sel_old, sel_one, sel_zero);
signal i2c_clk_sel : i2c_clk_sel_t;
signal i2c_clk : std_ulogic;
signal i2c_clk_new : std_ulogic;
signal i2c_dat : std_ulogic;
signal i2c_dat_new : std_ulogic;
begin
-- i2c register with ack build from i2c without ack
-- i2c data is transmitted msb first, so bus direction is changed also
i2c_reg_with_ack(0 to 7) <= i2c_reg_without_ack(23 downto 16);
i2c_reg_with_ack(8) <= '1';
i2c_reg_with_ack(9 to 16) <= i2c_reg_without_ack(15 downto 8);
i2c_reg_with_ack(17) <= '1';
i2c_reg_with_ack(18 to 25) <= i2c_reg_without_ack(7 downto 0);
i2c_reg_with_ack(26) <= '1';
i2c_reg_with_ack(27) <= '0';
-- This process counts the clocks for reducing the clock speed
-- of the i2c clock
clk_cnt_p : process(clk_i, reset_ni)
begin
if reset_ni = '0' then
clk_cnt <= 0;
elsif rising_edge(clk_i) then
if clk_cnt < fd_c then
clk_cnt <= clk_cnt + 1;
end if;
if clk_cnt_reset = '1' then
clk_cnt <= 0;
end if;
end if;
end process clk_cnt_p;
clk_cnt_done <= '1' when clk_cnt = fd_c else '0';
-- This is the index for the i2c register.
i2c_idx_p : process(clk_i, reset_ni)
begin
if reset_ni = '0' then
idx <= 0;
elsif rising_edge(clk_i) then
if idx_inc = '1' and idx < 27 then
idx <= idx + 1;
end if;
if idx_reset = '1' then
idx <= 0;
end if;
end if;
end process i2c_idx_p;
-- This are the registered outputs for the i2c clock and data
i2c_out_p : process(clk_i, reset_ni)
begin
if reset_ni = '0' then
i2c_clk <= '1';
i2c_dat <= '1';
elsif rising_edge(clk_i) then
i2c_dat <= i2c_dat_new;
i2c_clk <= i2c_clk_new;
end if;
end process i2c_out_p;
-- The i2c register without ack data
i2c_data_p : process(clk_i, reset_ni)
begin
if reset_ni = '0' then
i2c_reg_without_ack <= (others => '0');
elsif rising_edge(clk_i) then
if load_i2c_reg_without_ack = '1' then
i2c_reg_without_ack <= data_i;
end if;
end if;
end process i2c_data_p;
-- i2c data selection process
i2c_dat_sel_p : process(i2c_dat_sel, i2c_reg_with_ack, i2c_dat, idx)
begin
case i2c_dat_sel is
when sel_old => i2c_dat_new <= i2c_dat;
when sel_reg => i2c_dat_new <= i2c_reg_with_ack(idx);
when sel_one => i2c_dat_new <= '1';
when sel_zero => i2c_dat_new <= '0';
when others => i2c_dat_new <= '0';
end case;
end process i2c_dat_sel_p;
-- i2c clock selection process
i2c_clk_sel_p : process(i2c_clk, i2c_clk_sel)
begin
case i2c_clk_sel is
when sel_old => i2c_clk_new <= i2c_clk;
when sel_one => i2c_clk_new <= '1';
when sel_zero => i2c_clk_new <= '0';
when others => i2c_clk_new <= '0';
end case;
end process i2c_clk_sel_p;
-- Sequential process for the statemachine
statem_seq_p : process(clk_i, reset_ni)
begin
if reset_ni = '0' then
state <= idle_s;
elsif rising_edge(clk_i) then
state <= next_state;
end if;
end process statem_seq_p;
statem_comb_p: process(state, load_i, idx, clk_cnt_done)
begin
load_i2c_reg_without_ack<= '0';
idx_inc <= '0';
idx_reset <= '0';
clk_cnt_reset <= '0';
busy_o <= '1';
i2c_dat_sel <= sel_old;
i2c_clk_sel <= sel_old;
next_state <= state;
case state is
when idle_s =>
busy_o <= '0';
i2c_clk_sel <= sel_one;
i2c_dat_sel <= sel_one;
if load_i = '1' then
load_i2c_reg_without_ack <= '1';
clk_cnt_reset <= '1';
idx_reset <= '1';
next_state <= start_s;
i2c_dat_sel <= sel_zero;
end if;
when start_s =>
if clk_cnt_done = '1' then
next_state <= data_hold_s;
clk_cnt_reset <= '1';
i2c_clk_sel <= sel_zero;
end if;
when data_hold_s =>
next_state <= data_s;
i2c_dat_sel <= sel_reg;
when data_s =>
if clk_cnt_done = '1' then
next_state <= clock_high_s;
i2c_clk_sel <= sel_one;
clk_cnt_reset <= '1';
end if;
when clock_high_s =>
if clk_cnt_done = '1' then
if idx = 27 then -- last bit transmitted
i2c_dat_sel <= sel_one;
next_state <= stop_s;
else
idx_inc <= '1';
i2c_clk_sel <= sel_zero;
next_state <= data_hold_s;
end if;
clk_cnt_reset <= '1';
end if;
when stop_s =>
if clk_cnt_done = '1' then
next_state <= idle_s;
end if;
when others =>
next_state <= idle_s;
end case;
end process statem_comb_p;
i2c_clk_o <= i2c_clk;
i2c_dat_o <= i2c_dat;
end; -- architecture
|