summaryrefslogtreecommitdiff
path: root/src/main.rs
blob: c027b1145400e27a318d16b3b37a564ff166fd2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
//! # Pico Blinky Example
//!
//! Blinks the LED on a Pico board.
//!
//! This will blink an LED attached to GP25, which is the pin the Pico uses for
//! the on-board LED.
//!
//! See the `Cargo.toml` file for Copyright and license details.

#![no_std]
#![no_main]

// The macro for our start-up function
use rp_pico::entry;

// GPIO traits
use embedded_hal::digital::OutputPin;

// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
use panic_halt as _;

// Pull in any important traits
use rp_pico::hal::prelude::*;

// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use rp_pico::hal::pac;

// A shorter alias for the Hardware Abstraction Layer, which provides
// higher-level drivers.
use rp_pico::hal;

fn is_prime (a : u64) -> bool {
    if a % 2 == 0 {return false};
    for i in (3..a.isqrt()).step_by(2) {
        if a % i == 0 {
            return false;
        }
    }
    return true;
}

fn find_next_smaller_prime(mut x : u64) -> u64 {
    if x <= 1 {return x};
    if x % 2 == 0 {x=x-1};
    while !is_prime(x) {x = x - 2};
    return x;
}

/// Entry point to our bare-metal application.
///
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables are initialised.
///
/// The function configures the RP2040 peripherals, then blinks the LED in an
/// infinite loop.
#[entry]
fn main() -> ! {
    // Grab our singleton objects
    let mut pac = pac::Peripherals::take().unwrap();
    let core = pac::CorePeripherals::take().unwrap();

    // Set up the watchdog driver - needed by the clock setup code
    let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);

    // Configure the clocks
    //
    // The default is to generate a 125 MHz system clock
    let clocks = hal::clocks::init_clocks_and_plls(
        rp_pico::XOSC_CRYSTAL_FREQ,
        pac.XOSC,
        pac.CLOCKS,
        pac.PLL_SYS,
        pac.PLL_USB,
        &mut pac.RESETS,
        &mut watchdog,
    )
    .ok()
    .unwrap();

    // The delay object lets us wait for specified amounts of time (in
    // milliseconds)
    let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().to_Hz());

    // The single-cycle I/O block controls our GPIO pins
    let sio = hal::Sio::new(pac.SIO);

    // Set the pins up according to their function on this particular board
    let pins = rp_pico::Pins::new(
        pac.IO_BANK0,
        pac.PADS_BANK0,
        sio.gpio_bank0,
        &mut pac.RESETS,
    );

    // Set the LED to be an output
    let mut led_pin = pins.led.into_push_pull_output();

    // Blink the LED at 1 Hz
    loop {
        led_pin.set_high().unwrap();
        delay.delay_ms(500);
        if find_next_smaller_prime(1<<36) > 5 {
            led_pin.set_high().unwrap();
        }
        led_pin.set_low().unwrap();
        delay.delay_ms(500);
    }
}

// End of file